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The theoretical work reported herein studies the free-surface profile, the flow structure,
and the pressure distribution of a finite-amplitude solitary wave on shallow water
with uniform vorticity. The kinematic problem for the stream function is formulated
employing the vertical coordinate and the free surface as the independent variables of
the Poisson equation with variable coefficients that are functions of the Hamiltonian
of the rotational solitary wave. The exact solution of the boundary-value kinematic
problem for the stream function is derived in the form of a power series complemented
by a recurrence relation. The dynamic problems for the Hamiltonian and the free
surface are solved globally in the Boussinesq–Rayleigh approximation. To find angles
enclosed by the branches of the solution at critical points and points of bifurcation the
surface streamline is also treated locally by an exact topological solution. The complete
analysis of the four-dimensional Hamiltonian maps presented in § 4 specifies critical
values of the Froude number and the vorticity for five flow regimes: the emergence
of the solitary wave, the flow separation near the bottom, the flow separation near
the crest, the critical regime for an instability, and the formation of a limiting
configuration. The streamlines of the recirculating flow are obtained as a single-eddy
bifurcation that preserves continuity of all derivatives on the boundary streamline.
The eddy separated near the crest forms the limiting configuration by blocking
the upstream current. The results are compared with weakly nonlinear theory, with
numerical simulations and with field observations with satisfactory agreement.

1. Introduction
Surface waves in natural basins usually propagate on shear currents, rather than

on still water. For waves of permanent form that occur on running water of finite
depth, the assumption of irrotational motion is artificial since the horizontal velocity
of the steady stream varies with depth because of the atmosphere–ocean interaction,
ocean currents, and the viscous boundary layer. The integral of the steady vorticity
transport equation for the inviscid core flow, D(ω,ψ)/D(X1, x3) = 0, states that the
vorticity is a function of the stream function only (Lamb 1932). By Taylor’s theorem
ω(ψ) = ω(ψ0)+ω′(ψ0)(ψ−ψ0)+ · · ·. Hence, the uniform distribution of vorticity is the
next step in the development of a theory of the rotational solitary wave that admits a
quite straightforward continuation of the solutions derived for the irrotational solitary
wave. As we shall see, the problem considered of the finite-amplitude solitary wave
on shallow water with the uniform vorticity is characterized by three independent
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Figure 1. Sketch of theories and numerical simulations in the space of parameters of the rotational
solitary-wave problem. A rough domain of convergence of the Boussinesq–Rayleigh approximation
for the irrotational solitary wave is shaded.

parameters:

α = (A−H)/H, β = (H/L)2, Ω = ω(ψ0)H/U0. (1.1a, b, c)

Here, H is a depth of the fluid at infinity, A is an elevation of the crest, α is an
amplitude parameter, L is a scale of the horizontal coordinate, β is a shallowness
parameter, ω0 is a constant value of vorticity, U0 is an absolute velocity on the free
surface at infinity in the reference frame moving with the solitary wave, and Ω is a
dimensionless vorticity. A sketch of the known theoretical and numerical results in
the three-dimensional space of parameters (1.1) is shown in figure 1.

The theory of the irrotational solitary wave has been the object of study of many
authors since the pioneering investigations of Boussinesq (1871) and Rayleigh (1876).
They developed the shallow water theory using the series expansion for α = O(1) up
to O(β2). Korteweg & de Vries (1895) considered the problem in the weakly nonlinear
approximation for α = O(β) up to O(β3) and initiated many works on interaction of
the solitary waves, which are Hamiltonian in this case. See the recent review work
by Johnson (1997) for references. Results for the irrotational solitary wave on water
of finite depth can be divided in two classes: the series solutions and the numerical
solutions. The most developed series solution is the power series in α centred at
H for β = 1 which was calculated up to O(α2) by Keller (1948), up to O(α3) by
Laitone (1960), up to O(α4) by Grimshaw (1971), up to O(α10) by Fenton (1972),
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up to O(α15) by Longuet-Higgins & Fenton (1974), up to O(α18) by Pennel & Su
(1984), and up to O(α28) by Pennel (1987). Other types of series were used by Witting
(1975), Karabut (1996) and Longuet-Higgins & Fox (1996). The numerical solutions
obtained by Byatt-Smith & Longuet-Higgins (1976), Williams (1981) and Hunter &
Vanden-Broeck (1983) are mainly based on finite difference approximations of the
exact integral equations derived by Milne-Thompson (1968) and Longuet-Higgins
(1974).

Note that β = 1 in all of the above-mentioned works on water of finite depth
and the whole two-dimensional parameter space of the irrotational solitary wave is
not fully described. So, the Boussinesq–Rayleigh approximation provides the largest
domain of convergence among the analytic solutions for the irrotational solitary
wave. A similar approximation was recently developed for the internal steady and
unsteady waves (see Derzho & Grimshaw 1997 and references therein). They showed
that the small value of the Boussinesq parameter allows the construction of the
finite-amplitude rotational solitary waves.

Theoretical work on waves propagating on non-uniform currents is reviewed in
Peregrine (1976) and Craik (1985). The rotational solitary wave on the shallow
stream with an arbitrary distribution of vorticity was studied by Benjamin (1962) in
the Korteweg–de Vries (KdV) approximation for α = β up to O(β2). Benney (1966)
and Freeman & Johnson (1970) presented an alternative derivation of Benjamin’s
results and showed that the rotational solitary wave is the Hamiltonian system in
the KdV approximation. The highly nonlinear solitary waves on water of finite depth
with constant vorticity were considered numerically by Teles da Silva & Peregrine
(1988), Pullin & Grimshaw (1988), Vanden-Broeck (1994), and Sha & Vanden-Broeck
(1995) for β = 1 by the surface integral equation method. Teles da Silva & Peregrine
(1988) showed that the rotational solitary waves exist both for positive and negative
vorticity, calculated the integral properties of the solitary waves, and demonstrated
that the far upstream flow separates from the bottom beneath the crest for negative
vorticity if α is large enough. For highly nonlinear periodic waves with negative
vorticity, the pressure beneath the wave crest drops below the atmospheric value
and a pressure instability occurs. Vanden-Broeck (1994) found the critical value of
vorticity Ωc such that α is unbounded for Ω < Ωc, calculated the solitary wave in the
absence of gravity, and constructed the new family of solutions. Pullin & Grimshaw
(1988), Sha & Vanden-Broeck (1995) and Vanden-Broeck (1995, 1996) considered
numerically new families of periodic and solitary waves in one-layer and two-layer
fluids. Miroshnikov (1996) solved the problem analytically for the finite-amplitude
rotational solitary wave on the shallow stream with weak linear vorticity in the
Boussinesq–Rayleigh approximation for α = O(1) and Ω = O(β) up to O(β2) and
showed that there is the critical value of α such the flow separates near the crest in
the supercritical regime. It was also shown that the flow separation can be controlled
by the electromagnetic force for the solitary wave propagating on the shallow stream
of electrolyte (Miroshnikov 1995).

The main difference between the rotational solitary wave and the irrotational one
is formation of eddies at high α. This feature crucially alters the kinematic nature of
the wave motion. The irrotational solitary wave is a quasi-kinematic object that does
not perform a large-scale transfer of mass, except the drift δ = O(α1/2) (Fenton 1972),
but the rotational solitary wave does transfer the mass of the separated eddy in the
supercritical regime of flow separation (Miroshnikov 1999). This interesting property
of the rotational solitary wave has also attracted the attention of investigators of
an internal solitary wave in continuously stratified fluids where vorticity is generated
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by the internal wave (see Brown & Christie 1998; Derzho & Grimshaw 1997 and
references therein).

The main goals of the present work are the following: (a) to develop the exact series
solution of the kinematic boundary-value problem for the finite-amplitude solitary
wave on shallow water with constant vorticity, (b) to show that the rotational solitary
wave is a Hamiltonian system to any order in β, (c) to find the Hamiltonian in the
Boussinesq–Rayleigh approximation for α = O(1) and Ω = O(1) up to O(β2), (d )
to extend the Boussinesq–Rayleigh solution for the solitary wave on shallow water
with constant vorticity, (e) to study critical parameters and topological properties
of the single-eddy bifurcation, (f ) to explore the pressure instability of the resulting
coherent wave–vortex structures, and (g) to compare the obtained theoretical results
with the weakly nonlinear theories, with the numerical simulations, and with the field
observations.

The remainder of this paper is structured as follows. The kinematic problem for the
nonlinear rotational solitary with recirculating flow is set up in § 2 using the vertical
coordinate and the free surface as the independent variables of the Poisson equation,
with the coefficients depending on the Hamiltonian of the rotational solitary wave
and its derivative. The dynamic problem is also formulated in the same variables. The
exact solution of the kinematic problem is derived in the form of the power series in β
complemented by the recurrence relation in § 3. The boundary-value problem for the
stream function is solved exactly and an exact differential equation of infinite order
for the dynamic boundary condition is derived in the next section. The Hamiltonian of
the rotational solitary wave is obtained and the four-dimensional Hamiltonian maps
are studied in detail in § 4 to find critical parameters for the four flow regimes: the
emergence of the rotational solitary wave, the separation of the single vortex eddy near
the bottom, the separation of the single vortex near the crest, and the formation of the
limiting configuration. The previous theoretical and numerical results are confirmed
and extended. The admissible profiles of the free surface and the blocking of the
upstream current by the limiting configuration are considered here, as well. In § 5 the
detailed study of properties of the eddy separated by the single-eddy bifurcation is
tackled and we find that streamlines bifurcate preserving continuity of all derivatives.
The distribution of pressure is obtained in § 6 and we find the critical flow regime
for the pressure instability. The results are compared with field observations with
satisfactory agreement. A summary and concluding remarks are given in § 7. In the
Appendix, the previous results on the limiting angle of 120◦ for the rotational solitary
wave by Milne-Thompson (1968) and Delachenal (1973) are extended by the exact
topological solution in the immediate neighbourhood of the point of bifurcation. The
solution shows that the angle enclosed by two bifurcating branches is 60◦.

2. Formulation
A two-dimensional solitary wave is supposed to occur upon a non-uniform stream

of an inviscid fluid with constant density. The stream is assumed to be rotational
and characterized by a uniform vorticity ω0. Following the Boussinesq–Rayleigh
formulation developed by Lamb (1932, §§ 252, 253), we take a frame of reference with
the x1-axis along the horizontal bottom and with gravity acting in the −x3-direction.
The horizontal and vertical velocity components, the stream function, and the pressure
are v1, v3, ψ2, and p, respectively. Let c denote the absolute speed of the solitary wave
that, without loss of generality, propagates in the x1-direction. On the assumption
that the solitary wave propagates without change of form, the problem can be treated
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as one of steady motion by taking the reference frame (X1 = x1 − ct, x3) moving
horizontally with the wave. Then the variables of the moving frame, designated by
capital letters, are given by

(V1, V3, Ψ2, P )(X1, x3) = (v1 − c, v3, ψ2 + cx3, p)(x1, x3, t). (2.1)

We adopt a multiscale scheme of dimensionless variables in which H is taken as
the scale of x3 = Hz, L is taken as the scale of x1 = Lx and X1 = LX, U0 is taken
as the scale of v1 = U0u, V1 = U0U, v3 = U0w, and c = U0C , U0H is taken as the
scale of ψ2 = U0Hψ and Ψ2 = U0HΨ , U0/H is taken as the scale of ω0 = U0Ω/H .
By definition

U = −∂Ψ
∂z

, w = β1/2 ∂Ψ

∂X
, (2.2a, b)

Ω =
∂U

∂z
− β1/2 ∂w

∂X
= −

(
∂2Ψ

∂z2
+ β

∂2Ψ

∂X2

)
= −∇2Ψ. (2.3)

To find the primary plane parallel flow at the upstream infinity (X→∞), we assume
that its stream function depends only on z and solve (2.3) with the following boundary
conditions: Ψp(0) = 0 and Ψ ′p(1) = 1, where the first condition sets the reference
value for Ψp and the second condition specifies the direction of propagation. The far
upstream condition is then

X→∞, Ψ → Ψp = (1 + Ω)z − 1
2
Ωz2. (2.4)

This linear primary current Up = −Ψ ′p = −1 + Ω(z − 1) was used by Vanden-Broeck
(1994) to consider the solitary wave in water of finite depth with constant vorticity.
Note that the primary stream becomes uniform when Ω = 0.

The velocity of the primary flow in the moving frame is given in figure 2(a) for
both negative and positive vorticity. The most important property of the primary
flow is that the unidirectional flow becomes bidirectional if Ω < −1 . We restrict
the further analysis to Ω > −1 to avoid instability. As we shall see, this restriction
also follows from our investigation the Hamiltonian of the rotational solitary wave.
Benjamin (1962) arrived at the same conclusion in his study of the weakly nonlinear
rotational solitary wave.

Although in a real fluid the velocity must vanish on the channel bottom, and the
rate of shearing must vanish on the free surface, these conditions do not have to be
applied to the inviscid model considering the core flow at high Reynolds numbers
outside the viscous boundary layer. Following the formulation of the previous papers
on the linear-vorticity solitary waves (Miroshnikov 1995, 1996), we use the non-slip
condition on the channel bottom to construct a more realistic approximation to the
primary flow and to resolve ambiguity for C . Hence up = Ωz and C = 1 + Ω, i.e. the
irrotational solitary wave propagates on still water under the given condition. So the
rotational solitary wave propagates against the current for Ω < 0 and it propagates
with the current if Ω > 0.

In the Boussinesq–Rayleigh method, the kinematic conditions are used in the inte-
gral form. Namely, Ψ (X, z) is constant on the channel bottom and on the free surface
because both boundaries coincide with the streamlines. The unknown constants are
determined by the primary flow as

Ψ (X, 0) = 0, Ψ (X, s(X)) = 1 +
1

2
Ω, (2.5)
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Figure 2. (a) Illustration of the flow separation in the solitary wave on a stream with constant
vorticity in a frame of reference moving with the wave. (b) Definition sketches of the streamline
pattern associated with the single-vortex bifurcation that appears in (2.7) and (2.8).

where s(X) denotes the elevation of the wave above the channel bottom. To specify
that the wave must be a solitary wave, we complement (2.5) by

X → ±∞, s(X)→ 1. (2.6)

Note that that the requirement of the symmetry of the solitary wave with respect to
the z-axis is not necessary because the Hamiltonian of the rotational solitary wave
admits only symmetrical phase trajectories satisfying (2.6) (see § 4).

In the numerical simulation by Teles da Silva & Peregrine (1988) and in the weakly
vortical theories by Miroshnikov (1995, 1996), it was shown that the separation of the
steady flow inside the rotational solitary wave is possible if α is large enough. This
effect was qualitatively discussed in detail by Benjamin (1966, § 2) but he neglected the
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flow separation as non-treatable in the frames of the weakly nonlinear theory. The
separated solitary-wave flow given in figure 2(a, b) is similar to a steady duct flow in a
channel with the cavity corresponding to the crest of the rotational solitary wave. The
separation of a viscous flow in channels with curved walls is well documented. The
Görtler eddies are generated on the curved wall because of the viscous braking if α and
the Reynolds number, which corresponds to the Froude number in the case of solitary
waves, are high enough. The inviscid braking of the solitary-wave flow is caused by
two factors: (i) the kinematic braking, in agreement with the mass conservation law;
and (ii) the dynamic braking, in line with the energy conservation law. First, compare
two plane parallel velocity profiles of the solitary-wave stream at X = 0 and X = ∞,
as given in figure 2(a), where the elevation of the solitary-wave flow is 1 + α and 1,
respectively. As the total flux is constant, increasing s will decrease an average value
of the horizontal velocity, which can locally become negative. The location of zones
with the recirculating flow depends on the sign of Ω. For Ω < 0, the recirculating zone
is located near the channel bottom and it is located near the crest of the rotational
solitary wave if Ω > 0. Second, compare the velocities on the free surface at X = 0
and X = ∞. By the Bernoulli law, U2

0U
2(0, 1+α)/2+gH(1+α) = U2

0/2+gH (where g
is the gravitational acceleration). As the total energy of the fluid particle is constant,
an increase in α will diminish the velocity on the crest.

To include the recirculating flow in the formulation of the kinematic problem,
we consider a single stream function of the coherent wave–vortex structure which
describes the wavy flow by single-valued streamlines and the recirculating flow by
two-valued streamlines shown in figure 2(b). The single-valued streamline z = l(X) is
a solution of Ψ (X, z) = Ψ0, where 0 < Ψ0 < 1 + Ω/2 in agreement with (2.5). When
Ψ0 reaches the boundary value, the streamline bifurcates on the interval |X| < XB

into two branches:

Ω < 0, Ψ0 = 0, z =

{
ib(X), 0 when |X| 6 XB,
0 when |X| > XB,

Ω > 0, Ψ0 = 1 + Ω/2, z =

{
s(X), is(X) when |X| 6 XB,
s(X) when |X| > XB,

 (2.7)

where ib(±XB) = 0, is(±XB) = s(±XB), XB being the half-width of the recirculating
zone. The boundaries of the recirculating zone near the channel bottom are given
by z = ib(X) and z = 0, where |X| 6 XB and Ω < 0, and the boundaries of
the recirculating zone near the crest are given by z = s(X) and z = is(X), where
|X| 6 XB and Ω > 0. The streamlines of the recirculating flow are two solutions of
Ψ (X, z) = Ψ0:

Ω < 0, Ψ0 < 0,

Ω > 0, Ψ0 > 1 + Ω/2,

}
z = {lt(X), lb(X)} when |X| 6 Xl, (2.8)

where lt(±Xl) = lb(±Xl), Xl is the half-width of the zone bounded by z = ls(X) and
z = lb(X). Maximal and minimal values of Ψ0 give the flux of the separated eddies
for Ω > 0 and Ω < 0, respectively. Similar to the problem of an irrotational solitary
wave, the variables s(X), ib(X), is(X), lb(X), lt(X), Ψ0, XB , and Xl are unknowns of
the dynamic problem. Using the novel exact topological solution in the Appendix, it
is proved that the angle between s(X) and is(X) at the point of bifurcation X = ±XB

is equal to 60◦ for the recirculating flow and it is demonstrated that the angle is equal
to 120◦ for the wavy flow, in agreement with Milne-Thompson (1968) and Delachenal
(1973). This bifurcation may be called a single-eddy bifurcation. The most important
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property of the single-eddy bifurcation is that all derivatives of the single-valued
stream function are continuous on the separating streamlines ib(X) and is(X).

We assume that the rotational solitary wave is a one-dimensional, nonlinear Hamil-
tonian system with a Hamiltonian H = s′/2 +Π(s), where Π(s) is a potential energy,
s′ is a momentum and a phase mass is equal to one. This assumption is justified a
posteriori in § 4. As the Hamiltonian does not depend on time explicitly, the total
energy is the integral of motion

1

2

(
ds

dX

)2

+Π(s) = 0, (2.9)

where a constant of integration is included in Π(s). Equation (2.9) can be thought of
as the energy conservation law for a particle of unit mass moving in a potential well.
From this point of view the coordinate X is an analogue of a phase time and the
elevation s is an analogue of a phase coordinate, s′/2 represents the particle kinetic
energy K(s) = −Π(s), Π(s) represents the potential well, and the total energy of the
particle may be always set to zero by selecting the appropriate value of Π(s). It is well-
known that (2.9) always may be integrated implicitly as X−X0 =

∫
(−2Π)−1/2ds. This

integration yields that the problem is naturally parameterized by X = X(s), where
1 6 s 6 1+α. Although the Boussinesq–Rayleigh solution is based on the explicit form
of the free surface z = s(X), the numeric simulations of the rotational solitary wave
by Simmen & Saffman (1985), Teles da Silva & Peregrine (1988), Pullin & Grimshaw
(1988), Vanden-Broeck (1994), Sha & Vanden-Broeck (1995) used the parameterized
free surface to allow for multi-valued solutions. The parameterization proposed here
allows us to readily combine an explicit form of the stream function obtained by the
Boussinesq–Rayleigh method with the implicit double-valued streamlines required for
the single-eddy bifurcation.

Using (s, z) as new independent variables, we rewrite the kinematic problem (2.3),
(2.5), (2.7), (2.8) for Ψ (s, z) as follows:

∂2Ψ

∂z2
+ β

[
2K(s)

∂2Ψ

∂s2
+

dK

ds

∂Ψ

∂s

]
= −Ω, (2.10)

Ψ (s, 0) = 0, Ψ (s, s) = 1 + 1
2
Ω, (2.11)

Ω < 0, Ψ0 = 0, z =

{
ib(s), 0 when sB 6 s 6 1 + α,

0 when 1 6 s 6 sB,

Ω > 0, Ψ0 = 1 + Ω/2, z =

{
s, is(s) when sB 6 s 6 1 + α,

s when 1 6 s 6 sB,

 (2.12)

Ω < 0, Ψ0 < 0,

Ω > 0, Ψ0 > 1 + Ω/2,

}
z = {lt(s), lb(s)} when sl 6 s 6 1 + α, (2.13)

where sB = s(XB) and sl = s(Xl).
In the reference frame moving with the wave, the pressure is determined by the

Bernoulli integral, which for an inviscid steady flow with an arbitrary distribution of
vorticity is (Milne-Thompson 1968 § 4.5; Miroshnikovs 1996; Miroshnikov 1998)

1

2

[(
∂Ψ2

∂X1

)2

+

(
∂Ψ2

∂x3

)2
]

+
p

ρ
+ gx3 +

∫ Ψ2

ΨS

ω2(Ψ ) dΨ = E(ΨS ), (2.14)

where E is the Bernoulli energy, ρ is the fluid density and ΨS is a reference value
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of the stream function on the free surface. Let p0 denote the atmospheric pressure,
ω2(Ψ ) be the uniform vorticity ω0, then integrating (2.14) we have

1

2

[(
∂Ψ2

∂X1

)2

+

(
∂Ψ2

∂x3

)2
]

+
p

ρ
+ gx3 + ω0

(
Ψ2 −U0H − ω0H

2

)
=
U2

0

2
+
p0

ρ
+ gH.

(2.15)

Taking ρgH as the scale of p−p0 = ρgHP , using the Froude number F = U0/(gH)1/2

and parameterizing the free surface, we obtain

P (s, z) = 1−z+
F2

2

[
1− 2βK(s)

(
∂Ψ

∂s

)2

−
(
∂Ψ

∂z

)2
]

+F2Ω

(
1 +

Ω

2
−Ψ

)
. (2.16)

This is the pressure equation calculated in terms of the stream function and the
Hamiltonian. If solutions of the kinematic and free-surface problems are obtained,
then (2.16) solves the pressure problem. On the free surface, the pressure equation
combined with the differential form of the kinematic boundary condition (2.11) and
the condition P (s, s) = 0 yields

[1 + 2β K(s)]

(
∂Ψ

∂z

)2

z=s

+
2(s− 1)

F2
= 1. (2.17)

The present formulation of the mathematical problem of the rotational solitary wave
differs from the known formulations in two respects: (i) the explicit consideration
of the flow separation by the single-eddy bifurcation is novel, and (ii) the parame-
terization of the free surface displaying the Hamiltonian properties of the rotational
solitary wave was not used in the previous theories.

3. Stream function
Following the Boussinesq–Rayleigh method, we look for a solution of (2.10) with

Ω = 0 satisfying the kinematic condition on the bottom in the form of a power series
in β:

Ψ = U1(s)z + βU2(s)
z2

2!
+ βU3(s)

z3

3!
+ β2U4(s)

z4

4!
+ β2U5(s)

z5

5!
+ · · ·

= U1(s)z +

∞∑
n=1

βn
[
U2n(s)

z2n

(2n)!
+U2n+1(s)

z2n+1

(2n+ 1)!

]
, (3.1)

and assume that the series converges in some interval 0 < β < β1. Note that the
shallowness parameter is not necessarily small. For β = 1, (3.1) becomes the solution
of a finite-depth problem. If β is small enough, one may neglect terms of higher order
in β and find an asymptotic solution of a shallow-water problem. Differentiating (3.1)
with respect to z and s and substituting in (2.10) gives

∞∑
n=1

βn+1 z2n+1

(2n+ 1)!

[
U2n+3 + D(2)

s U2n+1

]
+ βU2 +

∞∑
n=1

βn+1 z2n

(2n)!

[
U2n+2 + D(2)

s U2n

]
= 0,

where D(2)
s is a nonlinear differential operator defined by

D(2n)
s = 2K(s)

d2n

ds2n
+

dK

ds

d

ds
, n = 0, 1, 2, 3, . . . . (3.2)
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For (2.10) to be satisfied for all β, Ω, s and z, the coefficients of each power of z must
be zero. Hence, the recurrence relations are

U2 = 0, U2n+2 + D(2)
s U2n = 0, n = 1, 2, 3, . . . ,

U2n+3 + D(2)
s U2n+1 = 0, n = 0, 1, 2, 3, . . . .

}
(3.3)

The even-numbered coefficients vanish identically. Solving the recurrence relation for
the odd-numbered coefficients, substituting these coefficients into (3.1) and adding the
partial solution of (2.10), we have

Ψ = −Ω(s)
z2

2!
+U1(s)z − β z

3

3!
D(2)
s U1 + β2 z

5

5!
D(4)
s U1 − β3 z

7

7!
D(6)
s U1 + · · ·

= −Ω(s)
z2

2!
+

∞∑
n=1

(−1)nβn
z2n+1

(2n+ 1)!
D(2n)
s U1. (3.4)

If we put Ω = 0, retain terms of O(β) and replace differentiation with respect to s with
differentiation with respect to X, (3.4) reduces to the Boussinesq–Rayleigh solution
(Lamb 1932, § 252). As one of the kinematic conditions is satisfied, the stream function
is determined up to a single arbitrary function U1(s), which represents the absolute
value of the velocity on the bottom.

To find the Boussinesq–Rayleigh solution of the boundary-value problem (2.10)–
(2.11) up to O(β2) the method of successive approximations was used. The same result
may be derived by the asymptotic expansion in β (Miroshnikov 1996). In this paper,
we look for the exact solution of the kinematic boundary-value problem in the form
of a power series in β

U1(s) = p0(s) + βp1(s) + β2p2(s) + β3p3(s) + · · · =
∞∑
n=0

βnpn(s), (3.5)

and assume that the series converges in some interval 0 < β < β2. Here p0 is a single
independent function corresponding to U1. It will be shown that p0 is the generating
function of the series for U1 and that it is connected with pn by a recurrence relation.
Substituting (3.5) for U1 in (3.4) and using the free-surface condition of (2.11), we
obtain

−Ω s
2

2!
+ sp0 +

∞∑
n=1

βn
n∑
k=0

(−1)k
s2k+1

(2k + 1)!
D(2k)
s pn−k = 1 + 1

2
Ω. (3.6)

In the irrotational case, this equation written in Cartesian coordinates coincides with
the nonlinear boundary-value operator equation for the irrotational solitary wave
obtained by Fenton (1972, equation (8a)). For this kinematic boundary condition to
be satisfied for all β, Ω and s, the coefficients of each power of β must vanish. This
condition yields

p0 = (1 + Ω/2)/s+ Ωs/2 (3.7)

and the following recurrent relations for n > 1:

p1 =
s2D(2)

s p0

3!
, p2 =

s2D(2)
s p1

3!
− s4D(4)

s p0

5!
, p3 =

s2D(2)
s p2

3!
− s4D(4)

s p1

5!
+
s6D(6)

s p0

7!
, . . . ,

pn =

n∑
k=1

(−1)k+1 s2k

(2k + 1)!
D(2k)
s pn−k. (3.8)

Substituting (3.8) for pn into (3.5) and the result into (3.4), we find the stream function
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of the rotational solitary wave on the stream with uniform vorticity,

Ψ = z

{(
1 +

Ω

2

)
1

s
+
Ω

2
(s− z) + β

(s2 − z2)

3!
D(2)
s p0

+β2

[
(s2 − z2)

3!
D(2)
s p1 − (s4 − z4)

5!
D(4)
s p0

]

+β3

[
(s2 − z2)

3!
D(2)
s p2 − (s4 − z4)

5!
D(4)
s p1 +

(s6 − z6)

7!
D(6)
s p0

]
+ · · ·

}

= z

[(
1 +

Ω

2

)
1

s
+
Ω

2
(s− z) +

∞∑
n=1

βn
n∑
k=1

(−1)k
s2k − z2k

(2k + 1)!
D(2k)
s pn−k

]
, (3.9)

where p0 and pn are given by (3.7) and (3.8), respectively. The kinematic boundary
conditions on the bottom (z = 0) and on the free surface (z = s) are obviously satisfied.
As s→ 1, the stream function of the rotational solitary wave approaches the stream
function of the primary flow (2.4). If we consider a primary flow with weak vorticity
Ω = −βδ0, retain terms of O(β) and replace D(2k)

s with differentiation with respect to
X, then (3.9) coincides with the previous result by Miroshnikov (1996) with δ1 = 0.

4. Hamiltonian
According to (2.2a), (3.7)–(3.9), the dynamic boundary condition (2.17) nonlinearly

depends on the horizontal velocity on the free surface

Us(s) = q0(s) + βq1(s) + β2q2(s) + β3q3(s) + · · · =
∞∑
n=0

βnqn(s), (4.1)

where q0(s) is the generating function,

q0 = −(1 + Ω/2)/s+ Ωs/2, (4.2)

and the qn(s) are determined for n > 1 by the following recurrence relations:

q1 =
2s2D(2)

s p0

3!
,

q2 =
2s2D(2)

s p1

3!
− 4s4D(4)

s p0

5!
,

q3 =
2s2D(2)

s p2

3!
− 4s4D(4)

s p1

5!
+

6s6D(6)
s p0

7!
,

qn =

n∑
k=1

(−1)k+1 2k

(2k + 1)!
s2kD(2k)

s pn−k. (4.3)

Then the series in β for the dynamic boundary condition becomes

r0(s) + βr1(s) + β2r2(s) + β3r3(s) + · · · =
∞∑
n=0

βnrn(s) = 0, (4.4)

where

r0 = 2(s− 1)/F2 + q2
0 − 1, (4.5)
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rn =

n∑
k=0

qkqn−k + 2K(s)

n−1∑
k=0

qkqn−k−1, n = 1, 2, 3, . . . . (4.6)

This exact series form of the dynamic boundary condition is an infinite-order nonlinear
differential equation for K that depends on s and four parameters: α, β, Ω, and F .
Thus the uniform-vorticity solitary wave is a single-degree-of-freedom Hamiltonian
system.

Consider the Boussinesq–Rayleigh approximation of (4.4) up to O(β2)

2
s− 1

F2
+
Ω2

2

(
s2

2
+

1

2s2
− 1

)
+ (Ω + 1)

(
1

s2
− 1

)
+ β

{
dK

ds

[
Ω2

3

(
s3

2
+

1

2s
− s
)

+
2Ω

3

(
1

2s
− s
)

+
2

3s

]
+K

[
Ω2

(
s2

2
− 1

3
− 1

6s2

)
− 2Ω

3

(
1 +

1

s2

)
− 2

3s2

]}
= 0,

(4.7)

which is the exact nonlinear differential equation and permits integration in elementary
functions. Integrating (4.7) with the boundary condition K(1) = 0 that corresponds
to the equilibrium point s = 1, we obtain the Hamiltonian of the solitary wave,

H =
1

2

(
ds

dX

)2

− (s− 1)2
[
12(1 + Ω)F2 − 12s− F2Ω2(s+ 3)(s− 1)

]
2βF2

[
Ω(s2 − 1)− 2

]2 = 0, (4.8)

where the rational Π (s) is the quotient of the polynomials in s of the fourth degree.
For Ω = 0, Π (s) becomes a polynomial in s of the third degree and coincides with
that by Lamb (1932, § 252).

For further analysis, it is convenient to introduce a new variable q = s − 1
representing the free surface in a moving frame of reference located at the far-
upstream elevation. The anisotropic influence of vorticity of the primary flow results
in two characteristic forms of the Hamiltonian of the vortical solitary wave on the
stream with uniform vorticity. When vorticity is positive, the Hamiltonian is

Hp =
1

2

(
dq

dX

)2

− q2(α− q)(q + q3)

2β(q − q1)2(q + q1 + 2)2
, (4.9)

where q1 = (1 + 2/Ω)1/2 − 1, q3 = 4 + α+ 12/(ΩF)2

α = {1 + 3/Ω + 3[1 + 1/F2 + 3/(Ω2F4)]/Ω2}1/2 − 6/(ΩF)2 − 2. (4.10)

Here 0 6 q 6 α < q1 and the denominator of the Hamiltonian has two real zeros. If
vorticity is negative, the Hamiltonian takes the following form:

Hn =
1

2

(
dq

dX

)2

− q2(α− q)(q + q3)

2β[(1 + q)2 + q2
2]
, (4.11)

where q2 = (−2/Ω−1)1/2. Here, the denominator possesses two complex-valued zeros.
Solving (4.10) for F2, we obtain the relationship between the Froude number and the
amplitude,

F2 =
1 + α

1 + Ω − (1 + α/4)αΩ2/3
, (4.12)

which reduces to the well-known relationship F2 = 1 + α for the irrotational solitary
wave and agrees for small Ω with the results found by Benjamin (1962, equation (46))
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and Miroshnikov (1996, equation (4.3)) on the basis of weakly nonlinear theory. Note
that the local Froude number does not depend on the shallowness parameter.

In figure 3, we present four-dimensional Hamiltonian maps of the vortical solitary
wave which are generalizations of two-dimensional and three-dimensional maps con-
sidered by Kolesnikov & Miroshnikov (1992) and Miroshnikov (1996), respectively.
In agreement with (2.9), the phase motion of the Hamiltonian system is analogous to
the motion of a particle in the gravity field, as the higher the potential energy of the
system the lower the kinetic energy. Qualitatively finding three-dimensional trajecto-
ries of a particle in the potential well and projecting them on the two-dimensional
plane of hydrodynamic variables, one, in fact, proves an existence theorem and finds
the number and type of possible solutions; this is a non-trivial problem in nonlinear
cases. So the four-dimensional Hamiltonian map could be regarded as an analog
computer for the qualitative integration of (4.8).

The phase potential energy of the rotational solitary wave strongly depends on the
Froude number. To find a first critical value of the Froude number corresponding to
the emergence of the solitary wave, we solve the equation α = 0 for F2. The result,

F2
1 = 1/(1 + Ω), (4.13)

coincides with the critical value for the irrotational solitary wave, F1i = 1, when
Ω = 0. In the first subcritical regime for F < F1, the phase well has a local minimum
at the initial point of the phase trajectory. Then the unique stable trajectory admissible
by the far upstream condition is the straight line. The width and the depth of the
well approach zero as F approaches F1 from the left and the phase motion becomes
unstable in the first critical regime for F = F1. In the first supercritical regime for
F > F1, the phase well has a local maximum at the initial point of the phase trajectory.
Then three trajectories may be displayed. The unbounded one corresponding to the
cosech2-solution for the irrotational solitary wave describes a solution blocking the
upstream flow and contradicts the mass conservation law. The second trajectory
resulting in a flat free surface is obviously unstable. Finally, the bounded trajectory
of the rotational solitary wave coinciding with the sech2-solution in the irrotational
case starts and terminates at the potential barrier as the energy level of the system is
equal to the height of the potential barrier.

The horizontal velocity of the solitary-wave stream beneath the crest readily follows
from (2.2a) and (3.9) as the free-surface elevation is known, s(0) = 1+α. In figure 4(a),
increasing Ω reverses the flow in a neighbourhood of the crest. This flow separation
starts when the horizontal velocity vanishes on the crest. It can be shown that this
condition combined with (4.12) yields a second critical value of the Froude number
for the formation of a single eddy near the crest,

F2
2p =

1

2

α(5α2 + 22α+ 20)2

10α4 + 79α3 + 232α2 + 288α+ 128− 2(1 + α)(2 + α)[3(5α2 + 12α+ 8)]1/2
.

(4.14)

Similarly, decreasing Ω shown in figure 4(b) forms a recirculating flow in a neighbour-
hood of the bottom. The flow separation now initiates when the horizontal velocity
vanishes on the bottom. This condition and (4.12) yield a second critical value of the
Froude number for the formation of a single eddy near the bottom,

F2
2n =

1

2

α(11α3 + 46α2 + 68α+ 48)2(5α2 + 16α+ 16)−1

11α4 + 46α3 + 74α2 + 48α+ 24− 2(1 + α)[3(11α2 + 24α+ 12)(α2 + 4)]1/2
.

(4.15)
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Figure 3. The four-dimensional Hamiltonian maps for β = 0.1 and Ω = −0.3: (a) F = 0.95 < F1;
(b) F = F1 = 1.1952; (c) F = 1.6 > F1. Values of H are shown by shading.
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Figure 4. Velocity profiles for α = 0.7 and X = 0. From right to left:
(a) Ω = 0.75, 0.5, 0.4163, 0.15, 0; (b) Ω = −0.8, −0.65, −0.5393, −0.35, −0.15, 0.

Thus the formation of recirculating flow depends only on α and the flow separation
occurs if α is high enough.

Figure 5 displays the anisotropic effect of the upstream vorticity on an extreme
amplitude of the solitary wave. For Ω > 0 , Π(q) has a vertical asymptote at q = q1

and increasing F deforms a nearly symmetric well into a highly asymmetric well.
As α approaches q1 from the left, the depth of the phase well becomes unbounded,
resulting in a sharp-crested solitary wave. Solving the equation α = q1, we get a fourth
critical value of the Froude number for the formation of the limiting configuration,

F2
4p = 6

(Ω + 3)(1 + Ω/2)1/2 + Ω

8Ω2 + 21Ω + 18
. (4.16)

This topological mechanism of the generation of the corner flow greatly differs from
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Figure 5. Cross-sections of the four-dimensional Hamiltonian maps for β = 0.1: (a) Ω = 1,
q1 = 0.7321, F1 = 0.7071, F4p = 1.006, and from left to right F = 0.2, 4, 0.7071, 0.87, 0.93, 0.97,
1.006; (b) Ω = −0.3 and from left to right F = 0.95, 1.1952, 1.4, 1.5, 1.6.

the mechanism of the Stock’s corner flow that is generated by gravity, described by the
dynamic boundary condition (2.17), and results in F2

4S = 2α (Vanden-Broeck 1994).
The hydrodynamic implementation of this topological mechanism is discussed in § 5.
The vertical asymptote does not exist for Ω 6 0 and the extreme wave is not bounded
by the topological mechanism, as increasing F results in an unbounded width of the
well shown in figure 5(b).

Figure 6(a) displays F = F(α, Ω) given by (4.12) and all critical values of the Froude
number of the rotational solitary wave, where F1 6 F 6 F4, F3 is a third critical value
of the Froude number for the pressure instability calculated in § 6. We observe that the
speed of the solitary wave increases with the growth of the wave amplitude and dimin-
ishes with the growth of the vorticity. F2p approaches F4S as α approaches zero. The
difference between F2p and F4S does not exceed 8% for α 6 2. It is shown by the exact
topological solution in the Appendix that, for fixed α, F4S > F2p > F4p when α > αB .

To compare (4.12) with the weakly nonlinear theory by Benjamin (1962) and the
numeric simulations by Vanden-Broeck (1994), curves are plotted in figure 6(b) in
variables α and G = 1/F2, where G is the dimensionless gravity. Expanding (4.12) up
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Figure 6. (a) F versus α for various values of Ω. The solid curves from top to bottom correspond
to Ω = −0.8, −0.7, −0.6, −0.5, −0.3, 0, 0.5, 1, 2, 4, 8. The curves terminate if F = F4p or F = F4n.
F2n is shown by the dashed-dotted curve (i), F2p by the bold dashed curve (ii), F4S by the dashed
curve (iii), F3n and F3p by points. (b) α versus G for various values of Ω. The solid curves from left
to right correspond to Ω = −0.8, −0.35, −0.2364, −0.11. The dashed curve (i) corresponds to F4S ,
the asterisks to numeric simulations by Vanden-Broeck (1994), the dashed-dotted lines (ii) to the
weakly nonlinear theory by Benjamin (1962).

to O(α2), we obtain

G = 1 + Ω − (1 + Ω + Ω2/3)α. (4.17)

Equation (4.17) coincides with the asymptotic solution by Benjamin (1962) shown
by dotted lines. In agreement with Vanden-Broeck (1994), there is an interval Ωc ≈
−0.2364 6 Ω 6 0, where the extreme amplitude is bounded by gravity, i.e. F4n = F4S .
This relation corresponds to the dashed curves in figure 6. For Ω < Ωc, the limiting
configuration is not bounded by gravity and the branches of (4.12) extend for
unbounded values of α without intersecting the broken line. The solitary wave on
the stream with constant vorticity exists in conditions of weightlessness. For G = 0,
the discrepancy between the current theory and the numerical simulations shown in
figure 6(b) by asterisks is negligible within the graphical accuracy for α 6 0.8 and
does not exceed 7% for α 6 6.
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The main advantages of the Hamiltonian approach applied systematically in the
present paper are the following: (i) the Hamiltonian of the vortical solitary wave
permits the complete qualitative integration of the nonlinear dynamic problem by
the four-dimensional Hamiltonian maps, and (ii) the Hamiltonian enables one to find
the critical values of the Froude number connected with the vertical structure of the
solitary-wave flow. In the next section, we consider the quantitative integration of the
Hamiltonian that displays the horizontal structure of the uniform-vorticity solitary
wave.

5. Flow structure
Integrating (4.8) written in terms of q with the boundary condition X(α) = 0,

we find the parametric solution for the solitary wave on the stream with constant
vorticity

X = ∓
[
β(1 + α)

3

]1/2
{

Ω

2α1/2

(
4− b

a
+ α

)
arctan

[
a(α− q)

aq + b

]1/2

+
2

(αb)1/2
ln

[b(α− q)]1/2 + [α(aq + b)]1/2

[q(b+ αa)]1/2
− Ω

2

[(α− q)(aq + b)]1/2

a

}
, (5.1)

a = Ω2(1 + α)/12, b = 1 + Ω + Ω2(4 + α)/12, (5.2)

where minus and plus signs correspond to positive and negatives values of X,
respectively. As Ω → 0, (5.1)–(5.2) may be expressed in the explicit form coinciding
with that by Lamb (1932, § 252, equation (12)). For Ω = −βδ0, the free-surface profile
reduces to that by Miroshnikov (1996, equation (3.21)) with δ1 = 0. Free-surface
profiles are shown in figure 7 for comparable amplitudes and several values of Ω.
The uniform vorticity strongly affects an effective wavelength of the solitary wave.
Comparing with the irrotational solitary wave shown in figure 7(b), we observe that
the rotational wave is nearly half the length for Ω = 2 and is one and half times
longer for Ω = −0.8. As F approaches F4p from the left, the profile approaches the
sharp-crested limiting configuration in figure 7(a).

Reducing (3.9) up to O(β2) by (4.8) in q, we obtain the stream function as a cubic
polynomial in z

Ψ = a3z
3 + a2z

2 + a1z, (5.3)

where a1, a2 and a3 are rational functions of q, α and Ω:

a3 =
q

24a4(1 + q)2
{q2[Ω2a(4 + a)− 12(1 + Ω)] + q[Ω2(12 + 8a− a2)

× 12(Ω + 1)(2a+ 3)]− 2Ω2a(4 + a)− 24Ω(1 + a)},
a4 = (1 + q)(1 + α)(Ωq2 + 2Ωq − 2), a2 = −Ω/2,
a1 =

1

24a4

{12q4Ω2(1 + α)− q3[Ω2(α2 − 44α− 48)− 12(1 + Ω)]

+ q2[Ω2(α2 + 64α+ 60)− 12(Ω + 1)(2α+ 3)] + q[2Ω2(α2 + 28α+ 24)

+ 24Ω(1 + α)]− 48(Ω + 1)(α+ 1)}.
Figures 8(b) and 8(c) show the single-valued streamlines with fixed α and β in the
second subcritical regime for F1 < F < F2n and the second critical regime for F = F2n,
respectively. Corresponding streamlines of the irrotational solitary wave are given in
figure 8(a) for comparison. Note that the stagnation zone is formed near the bottom
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Figure 7. Free-surface profiles for β = 0.1: (a) Ω = 2, and from bottom to top α = 0.1, 0.2, 0.3,
0.4142; (b) Ω = 0, α = 0.1, 0.2, 0.3, 0.4; (c) Ω = −0.8, α = 0.1, 0.2, 0.3, 0.4.

in the second critical regime for the negative shear. The flow separation near the
bottom in the second supercritical regime for F2n < F < F4n is shown in figure 8(d ).

Besides the bifurcating bottom streamline, figure 8(d ) presents double-valued
streamlines of the recirculating flow. The upper lt = lt(q, α, Ω) and lower lb = lb(q, α, Ω)
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recirculating streamlines are shown in figure 9(a) as points of intersection of curves for
Ψ with a horizontal line Ψ = −0.02. The bifurcation starts at a point zlb = zlb(q, α, Ω)
of a local minimum of Ψ = Ψ (z), where the branches lt and lb merge. Cubic curves
for Ψ in figure 9(a) have two points of intersection with horizontal lines Ψ = Ψ0

on the interval 0 6 z 6 1 + α. Calculations of the centre of the separated eddy
zcb = zlb(α, α, Ω) and a minimal value of the stream function Ψmin = Ψ (zcb) complete
the problem, where Ψmin determines the flux of the recirculating flow. The single-eddy
bifurcation looks like a merged pair of direct and reversed pitchfork bifurcations due
to the symmetry of the solitary-wave problem. As the steady recirculating flow may
be replaced with a bottom topography z = ib, the solution of the kinematic problem
considered is equivalent to the solution for a steady flow over a streamlined bump.
For the periodic waves, the corresponding eddy formed by the flow separation near
the bottom was obtained in the numeric simulations by Teles da Silva & Peregrine
(1988).

Figures 10(a) and 10(b) show the effect of the positive shear with fixed α and β
in the second subcritical regime for F1 < F < F2p and the second critical regime for
F = F2p, respectively. In the critical regime, the stagnation zone is now formed in
the neighbourhood of the crest. The single eddy separated near the crest is presented
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in figure 10(c) in the second supercritical regime for F2p < F < F4p. Figure 9(b)
shows lt and lb as points of intersection of curves for Ψ with a horizontal line
Ψ = 1.09. The bifurcation starts at a point zls = zls(q, α, Ω) of a local maximum of
Ψ = Ψ (z) that is the point of merging lt and lb. Cubic curves for Ψ have two points
of intersection with horizontal lines Ψ = Ψ0 as a third point of intersection lies
outside the interval 0 6 z 6 1 + α for q > qls. Calculating zls beneath the wave crest
and the corresponding value of the stream function, we find the vertical coordinate
of the centre of the separated eddy zcs = zls(α, α, Ω) located at X = 0 and its flux
Ψmax = Ψ (zcs). For Ω = O(β), the eddy generated by the flow separation near the
crest was obtained in the framework of the weakly nonlinear theory by Miroshnikov
(1995, 1996).

Figure 10(d ) presents the nearly critical regime for F → F4p that results in blocking
of the upstream flow by the growing eddy because its height approaches 1 + α as
F approaches F4p. Replacing the recirculating flow with a surface bluff topography
z = is, we see that the limiting configuration corresponds to the flow blocking by
a barrier which looks like a knife. Similarly, the flow show in figure 10(c) may be
treated as a free-surface flow generated by a moving immersed streamlined body with
the shape given by z = is.

The typical feature of the coherent-wave–vortex structures shown in figures 10(c),
10(d ), 11(c) and 11(d ) is the double-corner flow with unclosed streamlines that
corresponds to the Stock’s single-corner flow for the extreme waves; this is because,
in both cases, the maximal elevation of a fluid particle on the free surface of a wavy
domain is restricted by gravity. In the Appendix, it is shown that the exact value of
the corner angle of the coherent-wave–vortex structure is equal to that of the extreme
wave. The corner angle, θ, of the double-corner flow in the Boussinesq–Rayleigh
approximation deviates somewhat from θS = 120◦ if α − αB is small enough. For
example, θ = 111.7◦, (θ − θS )/θS = 7% for Ω = 0.1, β = 0.1, α = 1.12 and θ = 120.5◦,
(θ− θS )/θS = 0.4% for Ω = 0.42, β = 0.1 , α = 0.7. A similar conclusion holds for the
single-corner flow corresponding to the topological limiting structure. For example,
θ = 132.1◦, (θ − θS )/θS = 10% for Ω = 0.95, β = 0.1, α = 0.7.

Figures 11(a), 11(b), 11(c) and 11(d ) show the flow separation with fixed vorticity
and various α in the second subcritical regime for F1 < F < F2p, the second critical
regime for F = F2p, and the second supercritical regime for F2p < F < F3p, respectively.
This set of figures displays that the flow separation in steep rotational solitary waves
is a typical nonlinear threshold effect. The results obtained agree with a theorem by
Batchelor (1956) that steady laminar flows with closed streamlines have a uniform
vorticity distribution at high Reynolds numbers. In figures 11(a) and 11(b), the shear
flow pattern of the vortical solitary wave is formed by the unclosed streamlines, similar
to the streamlines of the irrotational wave that are always unclosed. In figures 11(c)
and 11(d ), the flow pattern of the resulting coherent wave–vortex structure is divided
into two domains. The first domain is the two sharp-crested wavy domain with
the unclosed streamlines, the upper border z = 1 + q for 0 6 q 6 qs and z = is
for qs 6 q 6 α. The second is the double-corner recirculating domain with closed
streamlines, the upper border z = 1+q, and the lower border z = is for qs 6 q 6 α. In
the theories of coherent structures, the solutions are formed by two stream functions
for domains with closed and unclosed streamlines that are matched on separating
streamlines (see reviews by Flierl 1987; Meleshko & van Heijst 1994; Chavanis &
Sommeria 1998). The current flow pattern is given by the unique stream function
(5.3) that may be thought of a surface Ψ = Ψ (X, z) in the three-dimensional space
(X, z,Ψ ). Then figures 11(a)–11(d ) are contour plots ofΨ , where the bifurcating closed
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Figure 10. Streamlines for α = 0.7, β = 0.1 and (a) Ω = 0.2, (b) Ω = 0.4164, (c) Ω = 0.75,
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streamlines correspond to cross-sections of the local maxima of Ψ and the single-
valued unclosed streamlines to cross-sections of the global minima of Ψ . Hence all
partial derivatives of Ψ are continuous on the separating streamlines as derivatives of
the unique function. Any discontinuity of the derivatives of Ψ should be considered
as an extra hydrodynamic effect (a point eddy, a point dipole, a vortex sheet, a
point pressure source, etc.) that was not directly included in the primitive equations
(Izrar & Lusseyran & Miroshnikov 1995). The continuity of the solution obtained
for the solitary wave with the vortical core naturally results from the single-eddy
bifurcation.

6. Pressure
The distribution of pressure (2.16) is determined by competition between three

factors: gravity, inertia and vorticity. The dynamic boundary condition for the dimen-
sionless pressure is that the pressure vanishes on the free surface, P = 0 on z = 1 + q.
The far-upstream condition states that the pressure becomes hydrostatic at upstream
infinity, P = 1 + z for q = 0. Using (4.8) in terms of q and (5.3), we have

P (q, z) =
(1 + q − z)(c2z

2 + c1z + c0)

4(q + 1)4[(αΩ2(α+ 4)− 12(Ω + 1)][Ωq(q + 2)− 2]
, (6.1)

where c2, c1, c0 are the fourth-degree, the sixth-degree, and the seventh-degree poly-
nomials in q with coefficients depending on parameters α and Ω, respectively. In this
paper, the analytic calculations were implemented using the symbolic manipulation
package maple available commercially. The final results of the symbolic calculations
for streamlines and critical values of parameters were verified using numerical subrou-
tines provided by maple. (The files containing the symbolic and numeric calculations
are available from the author upon request.)

Figure 12(a) displays the pressure profiles for the irrotational solitary wave as
a function of X for several values of z because such a presentation may be com-
pared with available field observations. The corresponding flow pattern is shown in
figure 8(a). Pressure signatures of the wave have the same single-peaked shape as
the streamlines. Similar single-peaked curves are obtained for pressure profiles in
the second subcritical regime for F1 < F < F2n. In the second critical regime for
F = F2n, formation of the stagnation zone at the bottom in figure 8(c) results in
flattening of the pressure profiles shown in figure 12(b). In the second supercriti-
cal regime for F2n < F < F3n, flow separation near the bottom is displayed by
double-peaked pressure profiles shown in figure 12(c). This pressure drop is related
to faster streaming near the free surface because of the blocking of the flow near
the bottom by the separated eddy. Note that the pressure profile does not depend
on z monotonically. In the third supercritical regime for F3n < F < F4n presented
in figure 12(d ) corresponding to figure 8(d ), the pressure drops below the atmo-
spheric value resulting in a three-dimensional pressure instability which cannot be
treated in the present two-dimensional theory. See Teles da Silva & Peregrine (1988)
for the field image of a wave subjected to the pressure instability shown in their
figure 18.

For Ω > 0, figures 13(a), 13(b), 13(c) and 13(d ) show the pressure profiles in the
second subcritical regime for F1 < F < F2p, the second critical regime for F = F2p,
the third subcritical regime for F2p < F < F3p and the third supercritical regime
for F3p < F < F4p, respectively. The flow patterns corresponding to figures 13(a),
13(c) and 13(d ) are presented in figures 10(a), 10(c) and 10(d ). The effect of positive
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Figure 14. Observed double-peaked pressure record corresponding to the highest solitary wave of
an amplitude-ordered family of atmospheric solitary waves. From Brown & Christie (1998).

vorticity is stronger than the effect of negative since the double-peaked pressure
profile is displayed for F = F2p. The pressure drops faster near the crest due to the
separated eddy and results in the instability. The order of the value of the horizontal
scale of the pressure drop generated by the flow separation is equal to the width of
the eddy.

Solving P ′(α, z) = 0 with the given Ω for z, we find z3n = z3n(α) and z3p = z3p(α)
for the negative and positive vorticity such that the pressure profile has a local
minimum beneath the crest. Then critical values of α are solutions of P (α, z3n) = 0
and P (α, z3p) = 0, which were solved numerically, and critical values of F follow from
(4.12). F3n and F3p are shown in figure 6(a) to display the third subcritical regimes
for F2n < F < F3n and F2p < F < F3p, where the coherent wave–vortex structures are
stable both for negative and positive vorticity. In the third supercritical regime for
F > F3p, the atmospheric air puts pressure on the eddy and the rotational solitary
wave breaks locally in the neighbourhood of the crest prior to formation of the
limiting configuration. This local breaking is often observed for steep waves on a
slightly inclined beach in field conditions.

Figure 14 shows the double-peaked pressure profile observed in a family of steep
atmospheric solitary waves. This figure is reproduced from the study by Brown
& Christie (1998) by the kind permission of those authors. Although the field
observations were recorded for internal solitary waves, this qualitative comparison is
an impressive indirect manifestation of stable coherent wave–vortex structures.

7. Conclusions
In this paper the extension of the Boussinesq–Rayleigh approximation to the

interaction of the free-surface solitary wave and the shear shallow layer with constant
vorticity is studied using a novel parameterized formulation of the kinematic and
dynamic problems that admit an exact solution in terms of the single-eddy bifurcation
which preserves continuity of all derivatives on separating streamlines. The resulting
extreme wave–vortex structure is treated at the corner points of the wavy and vortical
domains by the exact topological solution continuing the Stokes, Milne-Thompson
(1968), and Delachenal (1973) solutions for the extreme waves.

It is shown that the uniform-vorticity solitary wave is a Hamiltonian system to any
order of approximation. The detailed analysis of the four-dimensional Hamiltonian
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maps reveals the threshold values of the dimensionless parameters for the following
flow regimes: the emergence of the solitary wave, the flow separation near the crest,
the flow separation near the bottom, and the formation of the topological extreme
configuration. The results obtained show that the Bernoulli integral displays the
double-peaked pressure profile indicating development of the coherent wave–vortex
structure. Critical values of the dimensionless parameters for the pressure instability
are calculated and it is shown that there is a certain interval of the Froude numbers
where the solitary wave with the vortical core is stable both for negative and positive
vorticity. The theoretical results are compared with previous weakly nonlinear theories,
numerical simulations and field observations with satisfactory agreement.

The author is grateful to Dr Debra M. Szybinski for the helpful organization
of the Summer 1999 Scholar-in-Residence Program at New York University. It is
a pleasure to thank Professor David W. McLaughlin, Professor Esteban G. Tabak,
Professor David M. Holland, and, especially, Professor Sylvain E. Cappell for being
the author’s hosts at the Courant Institute for Mathematical Sciences (NYU).

Appendix. Topological solution
Milne-Thompson (1968) and Delachenal (1973) showed that the sharp crest of the

limiting form of a progressive rotational wave should have an angle of 120◦ and the
vorticity only affects the curvature on each side. This theoretical result was confirmed
by numeric simulations of solitary waves on water of finite depth with constant
vorticity by Teles da Silva & Peregrine (1988) and Vanden-Broeck (1994).

To consider the limiting configuration and the single-eddy bifurcation in a small
neighbourhood of corner points, we look for a topological solution in polar coor-
dinates as shown in figures 15(a) and 15(b), respectively. The polar coordinates are
given by

−X = r cosϕ, 1 + αB − z = y = rβ−1/2 sinϕ, (A 1)

where αB is the nonlinearity associated with the bifurcation point of the free-surface
streamline; αB = α for the single-corner flow. Note that β is used to take shallow
water into account. In the previous theories, β = 1. Transformation (A 1) diverges
as β → 0, which shows that the Stokes corner flow does not exist for vanishing β,
in agreement with the Boussinesq–Rayleigh solution. Formulation of the topological
problem is given by (2.3), the free-surface part of the kinematic condition (2.5), and
(2.17) written in the polar coordinates

∂2Ψ

∂r2
+

1

r

∂Ψ

∂r
+

1

r2

∂2Ψ

∂ϕ2
= −Ω

β
, (A 2)

y = 1 + αB − s(−r cosϕ), Ψ = 1 +
Ω

2
, β

[(
∂Ψ

∂r

)2

+
1

r2

(
∂Ψ

∂ϕ

)2
]

+ 2
αB − y
F2

= 1.

(A 3)

We satisfy (A 2) and the kinematic boundary condition by

Ψ = 1 +
Ω

2
− Ω

4β
r2 + Dmr

m sinm(ϕ− A) + Cnr
n cos n(ϕ− B), (A 4)

where the extra partial solution of the Laplace equation is added to Milne-Thomson’s
solution to satisfy the nonlinear dynamic boundary condition exactly. Here, n and
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Figure 15. Polar coordinates for (a) the single-corner and (b) double-corner flow.

m are the smallest exponents of a power series in r since the velocity of the fluid is
necessarily zero when r = 0. From (A 4) and (A 3) it follows that m = 3/2, n = 2,

F = (2αB)1/2. (A 5)

Equating to zero the coefficients of all powers of r, we obtain

r : 9
4
βD2

m − sinϕ

αBβ1/2
= 0, (A 6)

r3/2 : 3
2
Dm

{
4Cn[sin

3
2
(ϕ− A) cos 2(ϕ− B)− cos 3

2
(ϕ− A) sin 2(ϕ− B)]

−Ω
β

sin 3
2
(ϕ− A)

}
= 0, (A 7)

r2 : β

[
Ω2

4β2
+ 4C2

n − 2
Ω

β
Cn cos 2(ϕ− B)

]
= 0. (A 8)

When Ω = 0, αB = α and Cn = 0, (A 6) coincides with the equation for the Stokes
corner flow. When αB = α, Cn = 0 and terms O(r2) are neglected, (A 6)–(A 7) coincide
with the relevant system by Milne-Thomson (1968, § 14.50, equation (7)) taking into
account the different notation.

Equation (A 7) is always satisfied if sin 3(ϕ−A)/2 = 0 and sin 2(ϕ−B) = 0. In the
case of the single-corner flow,

A = γ, B = γ, ϕ = γ,
A = γ, B = γ + 2π/3, ϕ = γ + 2π/3,

}
(A 9)

where symmetry of the rotational solitary wave means that γ = π/6,

Cn =
Ω

4β
, Dm =

1

3β3/4

(
2

α

)1/2

. (A 10)

In the case of the double-corner flows, we get for the left-hand and right-hand
bifurcation points, respectively,

A = γ, B = γ, ϕ = γ,
A = γ, B = γ + 2π/3, ϕ = γ + 2π/3,
A = γ + π, B = γ, ϕ = γ + 2π/3 + π/3,

 (A 11)
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A = γ, B = γ, ϕ = γ,
A = γ, B = γ + 2π/3, ϕ = γ + 2π/3,
A = γ + 5π/3, B = γ, ϕ = γ + 2π/3 + π,

 (A 12)

where Cn = ± 1
4
Ωβ−1, Dm = 2

3
α
−1/2
B β−3/4 sin1/2 ϕ. Thus the angle between the limiting

branches of the wavy region is 120◦ and the angle between the double-valued branches
of the recirculating zone is 60◦. The above reasoning remains valid even if Ω is not
constant but a bounded function of r, for we can replace Ω with the leading term of
vorticity in the immediate neighbourhood of the bifurcation points.
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